# Facile access to 3-allyl- and 3-benzyl- $\Delta^{3}$-cephems through reductive addition/cyclization of allenecarboxylate with allylic and benzylic halides in an $\left[\mathrm{NiCl}_{2}\right.$ (bipy) $]$ P bBr $\mathbf{r}_{2} / \mathbf{A l}$ redox system 

H ideo Tanaka, Shin-ichi Sumida, Kouichi Sorajo, Y utaka Kameyama and Sigeru Torii*

Department of Applied C hemistry, Faculty of Engineering, Okayama U niversity, Tsushima-naka, O kayama 700, J apan


#### Abstract

Sequential reductive addition/cyclization of the allenecarboxylate 1 , derived from penicillin $\mathbf{G}$, with allylic and benzylic halides is successfully achieved by the aid of a three-metal redox system consisting of aluminium metal ( 2.5 molar equiv.) and catalytic amounts of $\left[\mathrm{NiCl}_{2}\right.$ (bipy)] ( 0.1 molar equiv.) and $\mathrm{PbBr}_{2}$ ( 0.05 molar equiv.) in $\mathbf{N}$-methyl-2-pyrrolidone (N M P) to afford the corresponding 3-allyl- and 3-benzyl-$\Delta^{3}$-cephems $3 \mathrm{a}-\mathrm{i}$ in $\mathbf{2 0 - 8 5} \%$ yields. The reactions of 1 with vinyl, prop-2-ynyl and phenyl halides in the same three-metal redox system result in the recovery of 1 and/or partial formation of 2-exomethylenepenam 4. A similar electroreductive addition/cyclization of 1 with allyl bromide is performed by passage of an electrical current ( $3.2 \mathrm{~F} \mathrm{~mol}{ }^{-1}$ ) in an $\left[\mathrm{NiCl}_{2}(\right.$ bipy $\left.)\right] / \mathrm{PbBr}_{2} / \mathrm{N} \mathrm{M} \mathrm{P}^{2} /(\mathrm{Pt}$ cathode)-(A I anode) system.


## Introduction

Since M orin's pioneering work in 1963 on penicillin $\rightarrow$ cephalosporin conversion, ${ }^{1}$ penicillins have been widely used as a starting material for the synthesis of various $\beta$-lactam antibiotics. ${ }^{2}$ This is because penicillins are readily available as a fermentation product, the skeletal characteristics and stereochemistry of which around the $\beta$-lactam ring may satisfy all requirements for the construction of a wide variety of $\beta$-lactams. Recently, we disclosed a conceptually new strategy ${ }^{3}$ for the transformation of penicillins into 3 -substituted $\Delta^{3}$-cephems 3 involving sequential addition/cyclization of the allenecarboxylate 1 with heteroatom nucleophiles, e.g. amines, azide and thiols, which were introduced at the 3-position of the cephem framework (Scheme 1). We and Farina independently suc-


Scheme 1
ceeded in the extension of the addition/cyclization methodology for the synthesis of 3 -alkenyl- $\Delta^{3}$-cephems, in which organotins/Cu' Cl combinations ${ }^{4}$ and organocuprates ${ }^{5}$ were employed as carbon nucleophiles. These methods, however, involve laborious operations since the former always produced troublesome tin residues and the latter was carried out at $-100^{\circ} \mathrm{C}$.
Although aluminium metal is an ideal reducing reagent because it is cheap, easy to handle and able to release $3 \mathrm{e}^{-} /$atom, its use in the modern organic chemistry is limited owing to lack of efficient electron transfer between aluminium metal and
organic substrates. Recently, various combinations of aluminium metal and catalytic amounts of the metal salts have been developed and received much attention as a powerful reductant for various synthetic purposes, ${ }^{6-10}$ wherein aluminium metal acts as an electron pool (or source) and metal salts work as an electron transfer catalyst. The chemical behaviour of the bimetal redox systems is highly dependent on the nature of the metal salts employed. For instance, Barbiertype allylation of carbonyl compounds ( $\mathrm{SnCl}_{2} / \mathrm{Al}, \mathrm{PbBr}_{2} / \mathrm{Al}$ and $\left.\mathrm{BiCl}_{3} / \mathrm{Al}\right),{ }^{6}$ imines $\left(\mathrm{TiCl}_{4} / \mathrm{Al}\right)^{7}$ and acetals ( $\mathrm{PbBr}_{2} / \mathrm{Al}$ ), ${ }^{8}$ reductive dimerization of imines $\left(\mathrm{PbBr}_{2} / \mathrm{Al}\right),{ }^{9}$ reductive elimination/cyclization of 1-[2,3-dichloro- or 3-chloro-2-(trifluoro-methylsulfonyloxy)-1-(p-methoxybenzyloxycarbonyl)prop-1-enyl]-3-(phenylacetamido)-4-phenylsulfonylthioazetidin-2-one ( $\left.\mathrm{PbBr}_{2} / \mathrm{Al}\right)^{10}$ have been successfully performed by the proper choice of metal salts (electron transfer catalyst). In this connection, we developed an $\left[\mathrm{N} \mathrm{iCl}_{2}(\right.$ bipy $\left.)\right] / \mathrm{PbBr}_{2} / \mathrm{Al}$ three-metal redox system which could promote homo coupling of alkenyl ${ }^{11}$ and aryl halides ${ }^{12}$ presumably through a disproportionation of the corresponding alkenyl $\mathrm{Ni}^{11}$ complexes. The mechanistic rationale encouraged us to investigate further applications of the three-metal redox system and we found that facile access to 3 -allyl- and 3 -benzyl- $\Delta^{3}$-cephems 3 could be achieved by reductive addition/cyclization of the allenecarboxylate $\mathbf{1}$ with allylic and benzylic halides in NMP in the $\left[\mathrm{NiCl}_{2}\right.$ (bipy) $] / \mathrm{PbBr}_{2} / \mathrm{Al}$ redox system. ${ }^{13}$ It is of interest to note that the role of aluminium in the three metal redox is similar to that of a cathode in an electrolysis system. We, therefore, investigated the electroreductive cross coupling reaction of $\mathbf{1}$ with allyl bromide in an $\left[\mathrm{N} \mathrm{iCl}_{2}(\right.$ bipy $\left.)\right] / \mathrm{PbBr}_{2}$ combination as the electron-transfer catalyst (mediator).
Herein we describe the reductive addition/cyclization of the allenecarboxylate 1 with allylic and benzylic halides in the [ $\mathrm{NiCl}_{2}$ (bipy) $] / \mathrm{PbBr}_{2} / \mathrm{Al}$ redox system, leading to the 3 -allyl- and 3 -benzyl- $\Delta^{3}$-cephems $\mathbf{3}$ together with the electrochemical version in an $\left[\mathrm{N} \mathrm{iCl}_{2}\right.$ (bipy) $] / \mathrm{PbBr}_{2}$ redox system.

## Results and discussion

At first, the reductive addition/cyclization of the allenecarboxylate 1 with allyl bromide, leading to 3 -allyl- $\Delta^{3}$-cephem 3 a (Scheme 2), was investigated in various metal salts/metal redox

Table 1 Reductive addition/cyclization of the allenecarboxylate $\mathbf{1}$ with allyl bromide in a metal salts/metal redox system ${ }^{\text {a }}$

| Entry | M etal salts | M etal (molar equiv.) | Isolated yield (\%) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 3a | 4 | 1 |
| 1 | [ $\mathrm{NiCl}_{2}$ (bipy)]/ $\mathrm{PbBr}_{2}$ | AI (2.5) | 47 | 16 | - |
| 2 | $\mathrm{PbBr}_{2}$ | Al (2.5) | - | 18 | 2 |
| 3 | [ $\mathrm{NiCl}_{2}$ (bipy)] | Al (2.5) | - | - | 67 |
| 4 | [ $\mathrm{NiCl}_{2}$ (bipy)]/ $\mathrm{PbBr}_{2}$ | - | - | - | 62 |
| $5^{\text {b }}$ | [ $\mathrm{NiCl}_{2}$ (bipy)]/ $\mathrm{PbBr}_{2}$ | Zn (5) | 12 | - | - |
| 6 | [ $\mathrm{NiCl}_{2}$ (bipy)]/ $\mathrm{PbBr}_{2}$ | $\mathrm{Sn}(5)$ | - | - | 79 |
| 7 | [ $\mathrm{NiCl}_{2}$ (bipy)]/ $\mathrm{PbBr}_{2}$ | $\mathrm{SnCl}_{2}$ (5) | - | - | - |
| 8 | $\mathrm{NiCl}_{2} / \mathrm{PbBr}_{2}$ | Al (2.5) | 11 | 13 | 12 |
| 9 | $\mathrm{PdCl}_{2} / \mathrm{PbBr}_{2}$ | AI (2.5) | - | 13 | - |
| $10^{\text {c }}$ | $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right]$ | $\mathrm{SnCl}_{2}(5)$ | - |  | - |

${ }^{\text {a }}$ Carried out with metal salts ( 0.1 molar equiv. each) and allyl bromide (2 molar equiv.) at room temperature. ${ }^{\text {b }}$ See ref. 15. ' See ref. 16.


Scheme 2
systems. The reaction of $\mathbf{1}$ with allyl bromide ( 2 molar equiv.) in $\mathrm{N}, \mathrm{N}$-dimethylformamide ( DMF ) in the presence of aluminium metal ( 2.5 molar equiv.) and catalytic amounts of [ $\mathrm{NiCl}_{2}$ (bipy)] ( 0.1 molar equiv.) and $\mathrm{PbBr}_{2}$ ( 0.1 molar equiv.) at room temperature afforded the 3 -allyl- $\Delta^{3}$-cephem 3a (47\%) together with 2-exo-methylenepenam 4 (16\%) (Table 1, entry 1). N otably, any detectable amount of the undesired $\Delta^{2}$-isomer ( 3 -allyl- $\Delta^{2}$ cephem) could not be observed in the crude products. The formation of the minor product 4 can be reasonably understood by assuming reductive cleavage of the S-S bond of $\mathbf{1}$ followed by intramolecular attack of the thus formed thiolate ion to the centre carbon of the allene moiety. ${ }^{14}$ The presence of $\left[\mathrm{N} \mathrm{iCl}_{2}-\right.$ (bipy)], $\mathrm{PbBr}_{2}$ and aluminium is indispensable for the formation of the 3-allyl- $\Delta^{3}$-cephem 3 a (entries 2-4). In a $\mathrm{PbBr}_{2} / \mathrm{Al}$ system, the 2 -exo-methylenepenam 4 was formed without any other isolable products, indicating that reductive S-S bond fission of the thiosulfonate moiety mainly occurred (entry 2). On the other hand, no appreciable reaction occurred in the absence of $\mathrm{PbBr}_{2}$ or aluminium, resulting in the recovery of $\mathbf{1}$ in 67 and $62 \%$ yields, respectively (entries 3 and 4). In entries 5-7, zinc, tin and tin(II) chloride were used in place of aluminium. Only zinc ${ }^{15}$ could effect the desired reaction but the yield of the desired product 3a was significantly reduced (12\%) owing to the formation of a complex mixture (entry 5). Tin resulted in the recovery of most of 1 (79\%) (entry 6) while tin(II) chloride brought about the formation of a complex mixture (entry 7). The reactions with other metal salts/metal combinations were also attempted (entries $8-10$ ). An $\mathrm{NiCl}_{2} / \mathrm{PbBr}_{2} / \mathrm{Al} \mathrm{combination}^{2}$ was less efficient, affording only $11 \%$ of $\mathbf{3 a}$ along with 4 (13\%) (entry 8). Both $\mathrm{PdCl}_{2} / \mathrm{PbBr}_{2} / \mathrm{Al}$ and $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right] / \mathrm{SnCl}_{2}{ }^{16}$ combinations failed to provide any detectable amount of the desired product 3a (entries 9 and 10).

A lthough it was found that the $\left[\mathrm{NiCl}_{2}(\right.$ bipy $\left.)\right] / \mathrm{PbBr}_{2} / \mathrm{A}$ I redox system was, of those tested, the most effective for reductive addition/cyclization of the allenecarboxylate $\mathbf{1}$ with allyl bromideto give the 3 -allyl- $\Delta^{3}$-cephem 3a, it was not of practical use because of the low product yield. In view of this we examined the reaction conditions and, particularly, the solvent effect. ${ }^{17}$ Thus, the reductive addition/cyclization of $\mathbf{1}$ with allyl bromide was carried out in a variety of solvents (Table 2). N M P was the most efficient solvent; indeed, the desired reaction proceeded

Table 2 Effect of solvent ${ }^{\text {a }}$

|  |  |  | Isolated yield (\%) |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | Entry | Solvent | Time (h) | 3a | $\mathbf{4}$ | $\mathbf{1}$ |
| 1 | DM F | 0.5 | 47 | 16 | - |  |
| 2 | N M P | 0.75 | 56 | Trace | - |  |
| 3 | TH F | 0.75 | - | - | 59 |  |
| 4 | M eCN | 2.0 | - | - | 90 |  |
| $5^{\text {b }}$ | M eOH | 2.0 | - | - | - |  |
| $6^{c}$ | N M P | 0.75 | 85 | Trace | - |  |

${ }^{\text {a }}$ Carried out with $\left[\mathrm{N} \mathrm{iCl}_{2}\right.$ (bipy)] ( 0.1 molar equiv.), $\mathrm{PbBr}_{2}$ ( 0.1 molar equiv.), aluminium ( 2.5 molar equiv.) and allyl bromide ( 2 molar equiv.) at room temperature, unless otherwise noted. ${ }^{\mathrm{b}} \mathrm{p}$-M ethoxybenzyl alcohol was obtained in $54 \%$ yield. ${ }^{\text {c }}$ Carried out with $\mathrm{PbBr}_{2}$ ( 0.05 molar equiv.) and allyl bromide ( 5 molar equiv.) at $35-40^{\circ} \mathrm{C}$.
smoothly in NM P to give 3a in 56\% yield together with a small amount of the 2-exo-methylenepenam 4 (entry 2). In contrast, when tetrahydrofuran (THF), acetonitrile and methanol were used, no reaction occurred and either 1 was recovered (59 and $90 \%$; entries 3 and 4) or a mixture of 1 and p-methoxybenzyl alcohol (54\%) was obtained (entry 5), the latter arising from decomposition of the ester moiety of $\mathbf{1}$. When the amount of allyl bromide was increased from 2 to 5 molar equiv., the yield of $\mathbf{2}$ increased to $85 \%$ (entry 6). In the reaction in NM P, the amount of $\mathrm{PbBr}_{2}$ could be reduced to 0.05 molar equiv. without a significant change in the product yield.
Although the reaction mechanism is unclear at present, it is likely that an $\mathrm{Ni}^{0} / \mathrm{Ni}^{11}, \mathrm{~Pb}^{0} / \mathrm{Pb}^{11}$ and $\mathrm{Al}^{0} /\left.\mathrm{A}\right|^{1 \prime \prime}$ three-metal redox system promotes the reductive addition/cyclization of the allenecarboxylate $\mathbf{1}$ as illustrated in Scheme 3. The $\mathrm{Ni}^{\circ}$ complex

would be formed initially and then regenerated in the $\left[\mathrm{NiCl}_{2}(\right.$ bipy $\left.)\right] / \mathrm{PbBr}_{2} / \mathrm{Al}$ redox system, in which aluminium releases the required electrons through a $\mathrm{Pb}^{0} / \mathrm{Pb}^{\prime \prime}$ redox mediatory system (step 1). The direct electron transfer from aluminium to Ni il complex would not be effectively achieved (Table 1, entry 3). The oxidative addition of the $\mathrm{Ni}^{0}$ complex with allyl bromide $5(\mathrm{R}=$ allyl, $\mathrm{X}=\mathrm{Br})$ would afford an Nil complex 6 (step 2). ${ }^{18}$ The subsequent reaction of the $\mathrm{Ni} \mathrm{i}^{11}$ complex 6 with the allenecarboxylate 1 would produce an intermediate $\mathbf{7}$ (step 3) which would, in turn, undergo ring closure, leading to the 3 -allyl- $\Delta^{3}$-cephems $3 \mathrm{a}(\mathrm{R}=\mathrm{allyl})$ and $\mathrm{N} \mathrm{i}^{11}$ complex. To complete the reaction, we needed a 2-5 fold excess of allyl bromide (Table 2, entries 2 and 6 ). The facts can be explained by assuming that the disproportionation of the $\mathrm{Ni} \mathrm{i}^{\mathrm{II}}$

Table 3 Reductive addition/cyclization of the allenecarboxylate $\mathbf{1}$ with various halides in an $\left[\mathrm{N} \mathrm{iCl}_{2}\right.$ (bipy)]/PbBr ${ }_{2} / \mathrm{Al}^{\text {I redox system }}{ }^{\text {a }}$

| Entry | R-X | Time (h) | Isolated yield (product) (\%) |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 3 | 4 |
| 1 | $\sim \mathrm{\sim r}$ | 0.75 | 85 (3a) | Trace |
| 2 |  | 0.75 | 61 (3a) | - |
| 3 | - | 0.75 | 26 (3a) | 5 |
| 4 | $\xrightarrow[\sim]{\sim}$ | 1 | 73 (3b) | - |
| 5 | $\sim^{\sim} \mathrm{Br}$ | 0.75 | 82 (3c) | - |
| 6 | $\mathrm{Ph} \sim \sim \mathrm{Br}$ | 0.75 | 60 (3d) | - |
| 7 |  | 1.5 | 35 (3e) | 10 |
| 8 | $\mathrm{Ph} \bigcirc \mathrm{Br}$ | 1 | 83 (3f) | - |
| 9 |  | 4 | 62 (3g) | - |
| 10 |  | 2 | 32 (3h) | - |
| 11 |  | 2 | 20 (3i) | 14 |
| $12^{\mathrm{b}, \mathrm{c}}$ |  | 10 | $-(3 \mathbf{j})$ | 12 |
| $13^{\text {b,d }}$ | Ph-I | 10 | $-(3 \mathrm{k})$ | 30 |
| $14^{\text {b,e }}$ |  | 6 | - (31) | - |

${ }^{\text {a }}$ Carried out in a similar manner to that described in the Experimental section unless otherwise noted. ${ }^{\text {b }}$ D etermined by H PLC: column: Y M C Pack ${ }^{\circledR}$ A M -312 OD S 6 mm id $\times 150 \mathrm{~mm}$, mobile phase: $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}=$
 phenylsulfonyl- $\Delta^{3}$-cephem were obtained in 15 and $2 \%$ yields, respectively. 1,4-D iphenylbuta-1,3-diene was obtained in $90 \%$ yield (based on $\beta$-bromostyrene). ${ }^{\mathrm{d}}$ The allenecarboxylate 1 and 3 -phenylsulfonyl- $\Delta^{3}$ cephem were obtained in 1 and $2 \%$ yield, respectively. Iodobenzene was recovered in $86 \%$ yield. ${ }^{\mathrm{e}} \mathrm{M}$ ost of the allenecarboxylate $\mathbf{1}$ and prop-2ynyl bromide were recovered.
complex 6 occurs competitively to give the corresponding dimer ( $\mathrm{R}-\mathrm{R}=$ hexa-1,5-diene). ${ }^{19}$

The reductive addition/cyclization of the allenecarboxylate $\mathbf{1}$ in the $\left[\mathrm{NiCl}_{2}\right.$ (bipy)] $/ \mathrm{PbBr}_{2} / \mathrm{Al} / \mathrm{NMP}$ system was successfully applied to the synthesis of various 3 -substituted $\Delta^{3}$-cephems 3 (Table 3). The reaction of $\mathbf{1}$ with allyl chloride and iodide proceeded in a similar manner although the yields of the 3 -allyl- $\Delta^{3}$ cephem 3a decreased to 61 and $26 \%$ yields, respectively (entries 2 and 3 ). The reaction of 1 with crotyl, cinnamyl and prenyl bromides proceeded in a regioselective manner to afford the corresponding $\alpha$-substituted products $3 \mathbf{c}-\mathbf{e}$, exclusively (entries $5-7$ ). When benzylic halides were used in place of the allylic halides, the corresponding 3-benzyl- $\Delta^{3}$-cephem derivatives $3 \mathrm{f}-\mathrm{i}$ were obtained in 20-83\% yields (entries 8-11).
A similar reaction of 1 with $\beta$-bromostyrene in the $\left[\mathrm{NiCl}_{2}(\right.$ bipy $\left.)\right] / \mathrm{PbBr}_{2} / \mathrm{Al}^{2} / \mathrm{NMP}$ system failed to produce any detectable amounts of the corresponding cephem $\mathbf{3 j}$ (entry 12). This failure can be ascribed to the fact that the disproportionation ${ }^{11}$ of the vinyl nickel (II) complex, $\left[\mathrm{PhCH}=\mathrm{CH}-\mathrm{N} \mathrm{i}^{11}-\mathrm{Br}\right] 6 \mathrm{j}$, smoothly occurred to give 1,4-diphenylbuta-1,3-diene; indeed $90 \%$ yield (based on $\beta$-bromostyrene) of the diene was obtained from the reaction mixture. The reaction of $\mathbf{1}$ with iodobenzene in the same three-metal redox system afforded the 2-exomethylenepenam $4(30 \%)$ without any detectable amount of the 3 -phenyl- $\Delta^{3}$-cephem 3k (entry 13). U nder these conditions, phenyl nickel(II) complex, $\left[\mathrm{Ph}-\mathrm{Ni} \mathrm{i}^{\prime \prime}-\mathrm{I}\right] \mathbf{6}$, seems not to be
formed. The result is well in accordance with the fact that the reductive homo coupling of aryl iodides in the $\left[\mathrm{NiCl}_{2}\right.$ (bipy)]/ $\mathrm{PbBr}_{2} / \mathrm{Al}$ effectively took place only in methanol but not in DM F or NMP. ${ }^{12}$ When the reaction of 1 with prop-2-ynyl bromide was carried out in a similar manner, most of the allenecarboxylate 1 and prop-2-ynyl bromide were recovered intact (entry 14).

A s mentioned above, the reductive addition/cyclization of the allenecarboxylate $\mathbf{1}$ with allylic and benzylic halides $\mathbf{5}$ into the 3 -substituted $\Delta^{3}$-cephems $\mathbf{3}$ was performed in the $\left[\mathrm{NiCl}_{2}\right.$ (bipy)]/ $\mathrm{PbBr} / 2 \mathrm{Al}$ redox system, wherein the aluminium would act as an electron pool and $\left[\mathrm{NiCl}_{2}\right.$ (bipy)] and $\mathrm{PbBr}_{2}$ would work as an electron transfer catalyst. The role of aluminium, i.e. releasing the required electrons, is quite similar to that of a cathode in an electroreductive system. This consideration, in turn, enabled us to investigate the electrochemical version. Thus, the electrolysis of $\mathbf{1}$ in $\mathrm{N} \mathrm{M} \mathrm{P} \mathrm{containing} \mathrm{[ } \mathrm{NiCl}_{2}$ (bipy)] ( 0.1 molar equiv.), $\mathrm{PbBr}_{2}$ ( 0.05 molar equiv.) and allyl bromide ( 5 molar equiv.) was carried out in an undivided cell fitted with a platinum cathode and an aluminium anode. Regulated DC power at $6.7 \mathrm{~mA} \mathrm{~cm}{ }^{-2}$ was supplied at room temperature until most of 1 was consumed ( $3.2 \mathrm{~F} \mathrm{~mol}^{-1}$ ), affording the 3 -allyl- $\Delta^{3}$-cephem 3 a ( $53 \%$ ) together with the 2 -exo-methylenepenam 4 (11\%) (Table 4, entry 1). The presence of catalytic amounts of $\left[\mathrm{NiCl}_{2}\right.$ (bipy)] and $\mathrm{PbBr}_{2}$ is indispensable, since in the absence of $\left[\mathrm{N} \mathrm{iCl}_{2}\right.$ (bipy)] or $\mathrm{PbBr}_{2}$ no appreciable amount of 3a was formed (entries 2 and 3). The yield of 3a was highly dependent on the choice of the anode materials, decreasing in the following order: Al (53\%) > Zn $(20 \%)>\mathrm{Sn}$ (not isolated), Pt (not isolated) (entries $1,4-6)$. In fact, the 3 -allyl- $\Delta^{3}$-cephem 3a could be produced in $34 \%$ yield without passage of a current, although a long reaction time was required to complete the reaction (entry 7). This fact suggests that the electroreductive addition/cyclization of 1 with allyl bromide would be achieved not only by cathodic reduction but also by chemical reduction with an aluminium anode.
In conclusion, we have developed a new methodology for the construction of the cephem framework which also allows the introduction of allyl or benzyl substituents at the 3-position. This is based on the reductive addition/cyclization of the allenecarboxylate 1 with allylic and benzylic halides in an $\left[\mathrm{NiCl}_{2}-\right.$ (bipy)]/PbBr $/$ A I redox system. Similar addition/cyclization was achieved by electrolysis of a mixture of 1 and allyl bromide in the $\left[\mathrm{N} \mathrm{iCl}_{2}\right.$ (bipy)]/PbBr $/ \mathrm{NM} \mathrm{P}$-(AI anode) system.

## Experimental

IR spectra were obtained on a Japan Spectroscopic Co., Ltd. JA SCO FT/IR-5000 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Varian VXR-200 $\left(200 \mathrm{M} \mathrm{Hz}\right.$ for ${ }^{1} \mathrm{H}$ and 50 M Hz for ${ }^{13} \mathrm{C}$ ) spectrometer. Elemental analyses were performed on a Perkin-Elmer 2400 Series II CHNS/O analyser. Highperformance liquid chromatography (HPLC) was executed with a Waters HPLC instrument equipped with a 600E system controller, a 486 tunable absorbance detector and a H itachi D-2500 chromato-integrator. DM F and NM P were distilled over calcium hydride under reduced pressure and stored over $4 \AA$ molecular sieves. THF was distilled over sodium and benzophenone before use. A cetonitrile was distilled over phosphorus pentoxide. Methanol was distilled over magnesium. The allenecarboxylate 1 was prepared according to the reported procedures in the literature. ${ }^{3}$ All other reagents were available from commercial sources and used without further purification, unless otherwise noted.

## General procedure for reductive addition/cyclization of

 allenecarboxylate with allylic or benzylic halides in an $\left[\mathrm{NiCl}_{2}(\right.$ bipy $) \mathrm{yPbBr} \mathrm{P}_{2} / \mathrm{Al}$ redox system (Table 3, entries 1-11)To a mixture of the allenecarboxylate 1 ( $100 \mathrm{mg}, 0.17 \mathrm{mmol}$ ), [ $\mathrm{N} \mathrm{iCl}_{2}$ (bipy)] ( $5 \mathrm{mg}, 0.017 \mathrm{mmol}$ ), $\mathrm{PbBr}_{2}(3 \mathrm{mg}, 0.01 \mathrm{mmol})$ and

Table 4 Electroreductive addition/cyclization of the allenecarboxylate $\mathbf{1}$ with allyl bromide ${ }^{\text {a }}$

| Entry | $\begin{aligned} & {\left[\mathrm{NiCl}_{2} \text { (bipy) }\right] / \mathrm{PbBr}_{2}} \\ & \text { (equiv.) } \end{aligned}$ | Electrode (anode)-(cathode) | Time <br> (h) | Electrical current passed ( $\mathrm{F} \mathrm{mol}^{-1}$ ) | I solated yield (\%) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 3a | 4 | 1 |
| 1 | 0.1/0.05 | ( Al$)$-(Pt) | 1.5 | 3.2 | 53 | 11 | - |
| 2 | 0/0.05 | (AI)-(Pt) | 1.5 | 3.2 | - | - | 72 |
| 3 | 0.1/0 | ( Al$)-(\mathrm{Pt})$ | 1.5 | 3.2 | - | - | 70 |
| 4 | 0.1/0.05 | (Zn)-(Pt) | 1.5 | 3.2 | 20 | 7 | 51 |
| 5 | 0.1/0.05 | (Pt)-(Pt) | 1.5 | 3.2 | - | - | 70 |
| 6 | 0.1/0.05 | (Sn)-(Pt) | 1.5 | 3.2 | - | - | 36 |
| 7 | 0.1/0.05 | ( Al$)-(\mathrm{Pt})$ | 12 | 0 | 34 | Trace | - |

${ }^{\text {a }}$ Carried out in a similar manner to that described in the Experimental section unless otherwise noted.
finely cut aluminium foil ( $11 \mathrm{mg}, 0.43 \mathrm{mmol}$ ) in $\mathrm{NMP(3ml)}$ was added the appropriate halide compound ( 0.85 mmol ) under an argon atmosphere. A fter being stirred at $35-40^{\circ} \mathrm{C}$ for $0.75-4 \mathrm{~h}$, the reaction mixture was poured into icecold $5 \%$ aqueous HCl and extracted with ethyl acetate The combined extracts were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$, benzene-ethyl acetate $\left.=8: 1\right)$ to afford the 3 -substituted $\Delta^{3}$-cephems 3a-i in 20-85\% yields.
p-M ethoxybenzyl 3-allyl-7-phenylacetamido- $\Delta^{3}$-cephem-4carboxylate 3a (entry 1). A ccording to the general procedure, the reaction of 1 ( $100 \mathrm{mg}, 0.17 \mathrm{mmol}$ ) with allyl bromide ( $74 \mu \mathrm{l}$, 0.85 mmol ) was carried out at $35-40^{\circ} \mathrm{C}$ for 0.75 h to give 3a (70 mg, 85\%) (Found: C, 64.95; H, 5.44; N, 5.66. Calc. for $\left.\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 65.25 ; \mathrm{H}, 5.48 ; \mathrm{N}, 5.85 \%\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3412(\mathrm{NH}), 1783(\mathrm{C}=0), 1721(\mathrm{C}=0)$ and $1682(\mathrm{C}=0)$; $\delta_{\mathrm{H}}(200$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$ ) $2.88\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.7\right.$ and $14.3, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$ ), 3.25 ( 1 H, d, J 18.3, SCH ${ }_{2}$ ), $3.36(1 \mathrm{H}, \mathrm{d}$, J 18.3, SCH 2 ), $3.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 18.3, SCH 2 ), $3.36\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.7\right.$ and $\left.14.3, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 3.61(1 \mathrm{H}$, d, J 16.2, PhCH 2 ), 3.64 ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2, \mathrm{PhCH}_{2}$ ), $3.79(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{O}$ ), $4.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.8, \mathrm{CHS}), 5.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.0$, $\left.\mathrm{CC}=\mathrm{CH}_{2}\right), 5.09\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.7, \mathrm{CC}=\mathrm{CH}_{2}\right), 5.17(2 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{CH}_{2}$ ), $5.75(1 \mathrm{H}, \mathrm{m}, \mathrm{CCH}=\mathrm{C}), 5.76(1 \mathrm{H}, \mathrm{dd}$, J 4.8 and 9.0 , CHN ), $6.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0, \mathrm{NH}), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{Ar})$ and 7.21-7.42 (7 H, m, Ar); $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$ ) 27.9, 37.6, 43.3, $55.2,57.3,59.0,67.6,113.9,117.9,123.3,127.1,127.6,129.1$, $129.4,130.5,131.3,133.7,133.9,159.8,161.7,164.5$ and 171.1 .
p-M ethoxybenzyl 3-(2-methylprop-2-enyl)-7-phenylacet-amido- $\Delta^{3}$-cephem-4-carboxylate 3b (entry 4). A ccording to the general procedure, the reaction of $1(100 \mathrm{mg}, 0.17 \mathrm{mmol})$ with 3-bromo-2-methylpropene ( $86 \mu \mathrm{l}, 0.85 \mathrm{mmol}$ ) was carried out at $35-40^{\circ} \mathrm{C}$ for 1 h to give 3 b ( $62 \mathrm{mg}, 73 \%$ ) (Found: C, 65.83 ; $\mathrm{H}, 5.75 ; \mathrm{N}, 5.63$. Calc. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 65.83 ; \mathrm{H}, 5.73$; $\mathrm{N}, 5.69 \%$ ); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3410(\mathrm{NH}), 1779$ ( $\mathrm{C}=0$ ), 1723 $(\mathrm{C}=0)$ and $1676(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.64(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CCH}_{3}$ ), $2.99\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.9, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 3.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.2$, $\left.\mathrm{SCH}_{2}\right), 3.30\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.2, \mathrm{SCH}_{2}\right), 3.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.9$ $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 3.62\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.5, \mathrm{PhCH}_{2}\right), 3.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.5$, $\mathrm{PhCH}_{2}$ ), $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.69\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}\right), 4.84(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}=\mathrm{C}\right), 4.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.7, \mathrm{CHS}), 5.17\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 5.75$ ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.7$ and $9.0, \mathrm{CH} N$ ), 6.33 ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0, \mathrm{NH}$ ), 6.87 (2 $\mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{Ar}$ ) and 7.22-7.41(7H,m,Ar); $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ $22.2,28.0,40.9,43.3,55.2,57.7,59.0,67.5,113.3,113.9,123.9$, 127.0, 127.6, 129.1, 129.4, 130.5, 131.5, 133.7, 141.7, 159.8, 161.7, 164.5 and 171.1.
p-M ethoxybenzyl 3-but-2-enyl-7-phenylacetamido- $\Delta^{3}$ -cephem-4-carboxylate 3c (entry 5). A ccording to the general procedure, the reaction of $1(100 \mathrm{mg}, 0.17 \mathrm{mmol})$ with but-2enyl bromide ( $87 \mu \mathrm{l}, 0.85 \mathrm{mmol}$ ) was carried out at $35-40^{\circ} \mathrm{C}$ for 0.75 h to give 3c ( $70 \mathrm{mg}, 82 \%$ ) (Found: C, 65.56; H, 5.75; N 5.98. Calc. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 65.83 ; \mathrm{H}, 5.73 ; \mathrm{N}, 5.69 \%$ ); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3390(\mathrm{NH}), 1779(\mathrm{C}=0), 1721(\mathrm{C}=0)$ and $1682(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.64\left(3 \mathrm{H}, \mathrm{d}\right.$, J 7.1, $\mathrm{CCH}_{3}$ ), $2.81\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.1\right.$ and $\left.12.9, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 3.06-3.31(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$ ), $3.17\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.3, \mathrm{SCH}_{2}\right.$ ), $3.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.3$, $\mathrm{SCH}_{2}$ ), $3.62\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2, \mathrm{PhCH}_{2}\right.$ ), $3.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2$,

PhCH 2 ), $3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right)$, $4.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.7, \mathrm{CH}$ ), 5.17 ( 2 $\mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{2}$ ), 5.21-5.68 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$ ), $5.75(1 \mathrm{H}$, dd, J 4.7 and 8.9, CHN ) $6.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9, \mathrm{NH}), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7$, Ar ) and 7.21-7.41 (7 H, m, Ar); $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 12.9,17.8$, 27.9, 30.7, 43.1, 55.1, 57.3, 59.0, 67.4, 113.8, 122.6, 125.5, 126.3, 127.0, 127.1, 127.4, 128.7, 128.8, 128.9, 129.3, 130.4, 133.1, $133.8,159.7,161.8,164.5$ and 171.3.
p -M ethoxybenzyl 3 -cinnamyl-7-phenylacetamido- $\Delta^{3}$-cephem-4-carboxylate 3d (entry 6). A ccording to the general procedure, the reaction of $1(100 \mathrm{mg}, 0.17 \mathrm{mmol})$ with cinnamyl bromide ( $126 \mu \mathrm{l}, 0.85 \mathrm{mmol}$ ) was carried out at $35-40^{\circ} \mathrm{C}$ for 0.75 h to give 3d ( $58 \mathrm{mg}, 60 \%$ ) (Found: C, 69.01; H, 5.28; N, 5.27. Calc. for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 69.29 ; \mathrm{H}, 5.45 ; \mathrm{N}, 5.05 \%$ ); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3410(\mathrm{NH}), 1779(\mathrm{C}=0), 1723(\mathrm{C}=0)$ and $1680(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} \mathrm{CDCl}_{3}\right) 2.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.2$ and 14.4, $\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$ ), $3.29\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.1, \mathrm{SCH}_{2}\right), 3.40(1 \mathrm{H}, \mathrm{d}$, J $18.1, \mathrm{SCH}_{2}$ ), $3.50\left(1 \mathrm{H}\right.$, dd, J 5.1 and $\left.14.4, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right)$, 3.61 ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2, \mathrm{PhCH}_{2}$ ), 3.63 ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2, \mathrm{PhCH}_{2}$ ), 3.78 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}$ ), $4.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.8, \mathrm{CHS}), 5.20(2 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{CH}_{2}$ ), $5.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.8,9.0, \mathrm{CHN}), 6.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 9.0, NH), 6.01-6.32 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHPh}$ ), $6.40(1 \mathrm{H}, \mathrm{d}$, J 15.8, $\mathrm{CH}=\mathrm{CHPh}$ ), $6.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.6, Ar) and 7.18-7.40 (12 $\mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 28.0,36.9,43.3,55.2,57.3$, 59.0, 67.7, 113.9, 123.3, 125.4, 126.2, 127.0, 127.6, 127.7, $128.5,129.1,129.4,130.6,131.1,133.0,133.6,136.7,159.8$, 161.8, 164.5 and 171.1.
p-M ethoxybenzyl 7-phenylacetamido-3-(3-methylbut-2-enyl)-$\Delta^{3}$-cephem-4-carboxylate 3 e (entry 7). A ccording to the general procedure, the reaction of $\mathbf{1}(100 \mathrm{mg}, 0.17 \mathrm{mmol})$ with 3 -methyl-but-2-enyl bromide ( $98 \mu \mathrm{l}, 0.85 \mathrm{mmol}$ ) was carried out at 35 $40^{\circ} \mathrm{C}$ for 1.5 h to give 3 e ( $31 \mathrm{mg}, 35 \%$ ) and the 2 -exomethylenepenam 4 ( $8 \mathrm{mg}, 10 \%$ )

Compound 3e (Found: C, 66.34; H,5.87; N, 5.51. Calc. for $\left.\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 66.38 ; \mathrm{H}, 5.97 ; \mathrm{N}, 5.53 \%\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3412(\mathrm{NH}), 1785(\mathrm{C}=0)$, $1717(\mathrm{C}=0)$ and $1680(\mathrm{C}=0)$; $\delta_{\mathrm{H}}(200$ $\left.\mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 1.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CCH}_{3}\right)$, 2.92-3.26 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$ ), 3.17 ( $1 \mathrm{H}, \mathrm{d}$, J 18.4, $\mathrm{SCH}_{2}$ ), 3.38 ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 18.4, SCH $)_{2}$, $3.63\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.4, \mathrm{PhCH}_{2}\right.$ ), $3.65(1 \mathrm{H}$, d, J 16.4, $\mathrm{PhCH}_{2}$ ), $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.6$, CHS ), $5.06(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{C}=\mathrm{CH}), 5.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 5.76(1$ H, dd, J 4.6 and 8.8, CHN ) 6.04 ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8, \mathrm{NH}$ ), $6.88(2 \mathrm{H}$, d, J 8.5, Ar) and 7.18-7.44 (7 H, m, Ar); $\delta_{\mathrm{c}}\left(50 \mathrm{MHz} \mathrm{CDCl}_{3}\right.$ ) 18.0, 25.8, 28.0, 32.0, 43.4, 55.3,57.2,58.9, 67.5, 113.9, 119.8, 122.4, 127.1, 127.7, 129.2, 129.5, 130.6, 133.2, 133.6, 135.1, 159.7, 161.9, 164.4 and 171.1.

Compound 4 (Found: C, 63.08; H, 4.94; N, 6.32. Calc. for $\left.\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 63.00 ; \mathrm{H}, 5.06 ; \mathrm{N}, 6.39 \%\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3309(\mathrm{NH}), 1801(\mathrm{C}=0)$, $1743(\mathrm{C}=0)$ and $1666(\mathrm{C}=0)$; $\delta_{\mathrm{H}}(200$ $\mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}$ ) $3.62\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right)$, $3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 5.11$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 5.18\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.5,1.7, \mathrm{CHCO}_{2}\right), 5.24(1 \mathrm{H}$, dd, J 1.5, 2.2, C=CH ), 5.35 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.7,2.2, \mathrm{C}=\mathrm{CH}$ ), 5.59 ( 1 H, d, J 4.0, CHS), $5.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.0$ and $9.3, \mathrm{CHN}$ ), $6.13(1 \mathrm{H}$, d, J 9.3, NH), $6.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{Ar})$ and 7.18-7.44 (7 H , m, $\mathrm{Ar}) ; \delta_{\mathrm{c}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 43.3,55.3,60.0,64.5,67.8,69.5$, 108.0, 114.1, 126.8, 127.7, 129.1, 129.4, 130.2, 133.6, 146.1, 159.9, 166.9, 170.4 and 172.4.
p-M ethoxybenzyl 3-benzyl-7-phenylacetamido- $\Delta^{3}$-cephem-4carboxylate $3 f$ (entry 8). A ccording to the general procedure, the reaction of $\mathbf{1}(100 \mathrm{mg}, 0.17 \mathrm{mmol})$ with benzyl bromide (101 $\mu \mathrm{l}, 0.85 \mathrm{mmol}$ ) was carried out at $35-40^{\circ} \mathrm{C}$ for 1 h to give 3 f (76 mg, 83\%) (Found: C, 68.14; H, 5.35; N, 5.34. Calc. for $\left.\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 68.16 ; \mathrm{H}, 5.34 ; \mathrm{N}, 5.30 \%\right) ; v_{\max }\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1}\right.$ $3414(\mathrm{NH}), 1783(\mathrm{C}=0)$, $1723(\mathrm{C}=0)$ and $1680(\mathrm{C}=0)$ ) $\delta_{\mathrm{H}}(200$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$ ) $3.11\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.3, \mathrm{SCH}_{2}\right.$ ), $3.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.3$, $\mathrm{SCH}_{2}$ ), $3.49\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.7, \mathrm{PhCH}_{2}\right.$ ), $3.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.9$, PhCH ${ }_{2}$ ), $3.63\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.9, \mathrm{PhCH}_{2}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.02$ ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.7, \mathrm{PhCH}_{2}$ ) $4.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.7, \mathrm{SCH}), 5.21(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2}\right), 5.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.7$ and $9.0, \mathrm{NCH}), 6.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 9.0, NH ), $6.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{Ar})$ and 7.14-7.39 ( $12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ); $\delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl} 3) 27.9,38.5,43.3,55.2,57.4,59.0,67.7$, 113.9, 123.6, 126.9, 127.0, 127.6, 128.7, 128.9, 129.1, 129.4, $130.6,131.5,133.6,137.2,159.8,161.9,164.5$ and 171.1.
$\mathrm{p}-\mathrm{M}$ ethoxybenzyl 3 -(p-bromobenzyl)-7-phenylacetamido- $\mathrm{\Delta}^{3}$ -cephem-4-carboxylate 3 g (entry 9). A ccording to the general procedure, the reaction of $1(100 \mathrm{mg}, 0.17 \mathrm{mmol})$ with p bromobenzyl bromide ( $212 \mathrm{mg}, 0.85 \mathrm{mmol}$ ) was carried out at $35-40^{\circ} \mathrm{C}$ for 4 h to give 3 g ( $65 \mathrm{mg}, 62 \%$ ) (Found: C, $59.05 ; \mathrm{H}$, 4.57; $\mathrm{N}, 4.57$. Calc. for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SBr}$ : C, 59.31; H, 4.48; N , $4.61 \%)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3410(\mathrm{NH}), 1783$ (C=O), 1721 (C=O) and $1682(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 3.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.4$, $\mathrm{SCH}_{2}$ ), $3.30\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.4, \mathrm{SCH}_{2}\right.$ ), $3.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.8$, $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 3.61\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.3, \mathrm{PhCH}_{2}\right), 3.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.3$, $\mathrm{PhCH}_{2}$ ), $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.00\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.8, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right)$, $4.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.8, \mathrm{SCH}), 5.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 5.79(1 \mathrm{H}$, dd, J 4.8 and 9.1, NCH ), $6.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.1, \mathrm{NH}), 6.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.7, Ar), 7.07 ( $2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4, \mathrm{Ar}$ ) and 7.21-7.43 ( $9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ); $\delta_{\mathrm{c}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 27.8,37.9,43.3,55.2,57.5,59.1,67.8$, 113.9, 120.8, 123.9, 126.8, 127.7, 129.2, 129.4, 130.4, 130.6, 131.8, 133.6, 136.2, 159.9, 161.8, 164.5 and 171.1.
p-M ethoxybenzyl 3 -(p-methylbenzyl)-7-phenylacetamido- $\Delta^{3}$ -cephem-4-carboxylate 3 h (entry 10). A ccording to the general procedure, the reaction of $1(100 \mathrm{mg}, 0.17 \mathrm{mmol})$ with p methylbenzyl bromide ( $115 \mu \mathrm{l}, 0.85 \mathrm{mmol}$ ) was carried out at 35 $40^{\circ} \mathrm{C}$ for 2 h to give 3 h ( $30 \mathrm{mg}, 32 \%$ ) (Found: $\mathrm{C}, 68.50 ; \mathrm{H}, 5.64$; $\mathrm{N}, 5.15$. Calc. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ : C, 68.61; H, 5.57; $\mathrm{N}, 5.16 \%$ ); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3350(\mathrm{NH}), 1775(\mathrm{C}=0), 1719(\mathrm{C}=0)$ and $1665(\mathrm{C}=0)$ ) $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.11(1 \mathrm{H}$, d, J 18.2, SCH ${ }_{2}$ ), $3.30\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.2, \mathrm{SCH}_{2}\right.$ ), $3.45(1 \mathrm{H}, \mathrm{d}$, J 14.7, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$ ) , 3.60 ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.4, \mathrm{PhCH}_{2}$ ), $3.65(1 \mathrm{H}, \mathrm{d}$, J 16.4, $\mathrm{PhCH}_{2}$ ), $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.7$, $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 4.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.8, \mathrm{SCH}), 5.21(2 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{CH}_{2}$ ), $5.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.8$ and $9.2, \mathrm{NCH}), 6.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 9.2, NH ), $6.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.7, Ar), 7.08 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}$ ) and 7.217.36 ( $8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ); $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right.$ ) 21.0, 27.8, 38.2, 43.4, 55.3, 57.4, 59.0, 67.7, 113.9, 127.0, 127.7, 128.8, 129.2, 129.4, $129.4,130.6,131.6,134.1,136.5,159.8,162.0,164.6$ and 171.1.
p -M ethoxybenzyl 3 -( p -methoxybenzyl)-7-phenylacetamido-$\Delta^{3}$-cephem-4-carboxylate $3 i$ (entry 11). A ccording to the general procedure, the reaction of $1(100 \mathrm{mg}, 0.17 \mathrm{mmol})$ with p methoxybenzyl chloride ( $115 \mu \mathrm{l}, 0.85 \mathrm{mmol}$ ) was carried out at $35-40^{\circ} \mathrm{C}$ for 2 h to give $\mathbf{3 i}(19 \mathrm{mg}, 20 \%)$ and the 2 -exomethylenepenam 4 ( $11 \mathrm{mg}, 14 \%$ ) (Found: C, 66.57; H, 5.45; $\mathrm{N}, 4.99$. Calc. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ : C, 66.65; H, $5.41 ; \mathrm{N}, 5.01 \%$ ); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3360(\mathrm{NH}), 1783(\mathrm{C}=0), 1723(\mathrm{C}=0)$ and $1686(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} \mathrm{CDCl}_{3}\right) 3.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.4$, $\mathrm{SCH}_{2}$ ), $3.29\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.4, \mathrm{SCH}_{2}\right)$, $3.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.7$, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}$ ), $3.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2, \mathrm{PhCH} 2), 3.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $16.2, \mathrm{PhCH}_{2}$ ), $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.95(1$ $\mathrm{H}, \mathrm{d}, \mathrm{J} 14.7, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}$ ), $4.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.7, \mathrm{SCH}), 5.21$ ( 1 $\mathrm{H}, \mathrm{d}, \mathrm{J} 12.1, \mathrm{CO}_{2} \mathrm{CH}_{2}$ ), $5.22\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.1, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 5.78(1$ H, dd, J 4.7 and 9.2, N CH ), $6.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.2, \mathrm{NH}), 6.81(2 \mathrm{H}$, d, J 8.7, Ar), $6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{Ar}), 7.11(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{Ar})$ and 7.21-7.39 (7 H, m, Ar); $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right.$ ) 27.7, 37.6, 43.2, $55.2,57.4,59.0,67.6,113.9,114.0,123.2,127.0,127.5,129.0$, 129.1, 129.3, 129.9, 130.5, 132.1, 133.7, 158.5, 159.8, 161.9, 164.6 and 171.1.

Reductive addition/cyclization of an allenecarboxylate with $\beta$-bromostyrene in an $\left[\mathrm{NiCl}_{2}\right.$ (bipy) $] / \mathrm{PbBr}_{2} / \mathrm{A}$ I redox system (Table 3, entry 12)
To a mixture of the allenecarboxylate $1(100 \mathrm{mg}, 0.17 \mathrm{mmol})$, [ $\mathrm{NiCl}_{2}$ (bipy)] ( $5 \mathrm{mg}, 0.017 \mathrm{mmol}$ ), $\mathrm{PbBr}_{2}(3 \mathrm{mg}, 0.01 \mathrm{mmol})$ and finely cut aluminium foil ( $11 \mathrm{mg}, 0.43 \mathrm{mmol}$ ) in NMP(3 ml) was added $\beta$-bromostyrene ( $109 \mu, 0.85 \mathrm{mmol}$ ) under argon atmosphere. A fter being stirred at $35-40^{\circ} \mathrm{C}$ for 10 h , an aliquot of the reaction mixture was analysed by HPLC, showing the presence of 1 (15\%), 2-exo-methylenepenam 4 (12\%), 3-phenyl-sulfonyl- $\Delta^{3}$-cephem (2\%) and 1,4-diphenylbuta-1,3-diene ( $90 \%$ based on $\beta$-bromostyrene).

## Reductive addition/cyclization of an allenecarboxylate with iodobenzene in an $\left[\mathrm{NiCl}_{2}(\right.$ bipy $\left.)\right] / \mathrm{PbBr}_{2} / \mathrm{A} I$ redox system (Table 3, entry 13)

To a mixture of the allenecarboxylate $1(100 \mathrm{mg}, 0.17 \mathrm{mmol})$, $\left[\mathrm{NiCl}_{2}\right.$ (bipy)] ( $5 \mathrm{mg}, 0.017 \mathrm{mmol}$ ), $\mathrm{PbBr}_{2}(3 \mathrm{mg}, 0.01 \mathrm{mmol})$ and finely cut aluminium foil ( $11 \mathrm{mg}, 0.43 \mathrm{mmol}$ ) in NMP(3 ml) was added iodobenzene ( $95 \mu \mathrm{l}, 0.85 \mathrm{mmol}$ ) under an argon atmosphere. A fter being stirred at $35-40^{\circ} \mathrm{C}$ for 10 h , an aliquot of the reaction mixture was analysed by HPLC, showing the presence of 1 (1\%), 2-exo-methylenepenam 4 (30\%), 3-phenyl-sulfonyl- $\Delta^{3}$-cephem ( $2 \%$ ) and iodobenzene ( $86 \%$ ).

## Reductive addition/cyclization of an allenecarboxylate with

 prop-2-ynyl bromide in an $\left[\mathrm{NiC}_{2}(\right.$ bipy $)$ $] \mathrm{PbBr}_{2} / \mathrm{Al}$ redox system (Table 3, entry 14)To a mixture of the allenecarboxylate $1(100 \mathrm{mg}, 0.17 \mathrm{mmol})$, [ $\mathrm{N} \mathrm{iCl}_{2}$ (bipy)] ( $5 \mathrm{mg}, 0.017 \mathrm{mmol}$ ), $\mathrm{PbBr}_{2}(3 \mathrm{mg}, 0.01 \mathrm{mmol})$ and finely cut aluminium foil ( $11 \mathrm{mg}, 0.43 \mathrm{mmol}$ ) in NMP(3 ml) was added prop-2-ynyl bromide ( $76 \mu \mathrm{l}, 0.85 \mathrm{mmol}$ ) under an argon atmosphere. A fter being stirred at $35-40^{\circ} \mathrm{C}$ for 6 h , an aliquot of the reaction mixture was analysed by H PLC, showing the presence of $\mathbf{1}$ ( $>99 \%$ ) and prop- 2 -ynyl bromide ( $>99 \%$ ).

## Electroreductive addition/cyclization of an allenecarboxylate with allyl bromide in an $\left[\mathrm{NiCl}_{2}\right.$ (bipy) $] \mathrm{P} \mathrm{bBr}_{2}$ system (Table 4, entry 1)

Electrolysis was carried out in an undivided cell fitted with aluminium anode and platinum cathode ( $1 \times 1.5 \mathrm{~cm}^{2}$ each). Into the cell was charged a mixture of the allenecarboxylate 1 ( 100 $\mathrm{mg}, 0.17 \mathrm{mmol}$ ), allyl bromide ( $103 \mathrm{mg}, 0.85 \mathrm{mmol}$ ), $\left[\mathrm{N} \mathrm{iCl}_{2}-\right.$ (bipy)] ( $5 \mathrm{mg}, 0.017 \mathrm{mmol}$ ), $\mathrm{PbBr}_{2}(3 \mathrm{mg}, 0.01 \mathrm{mmol})$ and $\mathrm{Et}_{4} \mathrm{NBF}_{4}(150 \mathrm{mg})$ in N M P (3 ml). The mixture was electrolysed at a constant current density ( $6.7 \mathrm{~mA} \mathrm{~cm}{ }^{-2}$ ) whilst being stirred at room temperature until most of the allenecarboxylate 1 had been consumed ( $1.5 \mathrm{~h}, 3.2 \mathrm{~F} \mathrm{~mol}^{-1}$ ). The reaction mixture was poured into ice-cold $5 \%$ aqueous HCl and extracted with ethyl acetate. The combined extracts were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$, benzeneethyl acetate $=8: 1$ ) to afford the 3 -allyl- $\Delta^{3}$-cephem $\mathbf{2 a}$ ( 44 mg , $53 \%$ ) together with the 2-exo-methylenepenam $4(8 \mathrm{mg}, 11 \%)$.

## Acknowledgements

We acknowledge financial support by a Grant-in-Aid for Scientific Research ( 03555185 and 05403025) from the M inistry of Education, Science and Culture of Japan. SC-N M R L aboratory of Okayama U niversity is thanked for obtaining NMR spectra.

## $R$ eferences

1 R. B. M orin, B. G. Jackson, R. A. M ueller, E. R. Lavagnino, W. B. Scanlon and S. L. Andrews, J. Am. Chem. Soc., 1963, 85, 1896.

2 F. A. Jung, W. R. Pilgrim, J. P. Poyser and P. J. Siret, in Topics in A ntibiotic Chemistry, ed. P. G. Sammes, H alsted Press, Chichester, vol. 4, 1980.

3 H. Tanaka, Y. K ameyama, S.-i. Sumida, T. Y amada, Y. Tokumaru, T. Shiroi, M. Sasaoka, M. Taniguchi and S. Torii, Synlett, 1991, 888. 4 H. Tanaka, Y. K ameyama, S.-i. Sumida and S. Torii, Tetrahedron Lett., 1992, 33, 7029.
5 (a) J. K ant and V. Farina, Tetrahedron Lett., 1992, 33, 3563; (b) V. Farina and J. K ant, Synlett, 1994, 565.

6 (a) K. U neyama, N. K awakami, A. M oriya and S. Torii, J. Org. C hem., 1985, 50, 5396; (b) K. U neyama, H. N anbu and S. Torii, Tetrahedron Lett., 1986, 27, 2395; (c) H. Tanaka, S. Y amashita, T. Hamatani, Y. Ikemoto and S. Torii, Synth. Commun., 1987, 17 789; (d) M. Wada, H. Ohki and K. A kiba, J. Chem. Soc., Chem. Commun., 1987, 708; (e) Z.-Y. Y ang and D. J. Burton, J. Org. Chem. 1991, 56, 1037.
7 H. Tanaka, K. Inoue, U. Pokorski, M. Taniguchi and S. Torii, Tetrahedron L ett., 1990, 31, 3023.
8 H. Tanaka, S. Yamashita, Y. Ikemoto and S. Torii, Tetrahedron L ett., 1988, 29, 1721.
9 H. Tanaka, H. D himane, H. F ujita, Y. Ikemoto and S. Torii, Tetrahedron Lett., 1988, 29, 3811
10 H. Tanaka, Y. N ishioka, Y. K ameyama, S.-i. Sumida, H. M atsuura and S. Torii, C hem. L ett., 1995, 709.
11 H. Tanaka, A. K osaka, S. Yamashita, K . M orisaki and S. Torii, Tetrahedron Lett., 1989, 30, 1261.
12 H. Tanaka, S.-i. Sumida, N. K obayashi, N. K omatsu and S. Torii, I norg. C him. Acta, 1994, 222, 323

13 H. Tanaka, S.-i. Sumida, K. Sorajo and S. Torii, J. Chem. Soc., C hem. Commun., 1994, 1461
14 H. Tanaka, Y. K ameyama and S. Torii, Synlett, 1992, 878.
15 (a) M. Zembayashi, K. Tamao, J. Yoshida and M. Kumada, Tetrahedron Lett., 1977, 47, 4089; (b) K. Takagi, N. H ayama and K. Sasaki, Bull. Chem. Soc. J pn., 1984, 57, 1887; (c) K. Takagi, H. M imura and S. Inokawa, Bull. Chem. Soc. J pn., 1984, 57, 3517; (d) M . Iyoda, M. Sakaitani, H. Otsuka and M. Oda, C hem. Lett., 1985, 127; (e) I. Colon and D. R. K elesy, J. Org. Chem., 1986, 51, 2627; (f ) A . Jutand and A. M osleh, Synlett, 1993, 568
16 J. P. Takahara, Y. M asuyama and Y. K urusu, J. Am. Chem. Soc., 1992, 114, 2577.
17 The proper choice of the solvent was significant for the homo coupling of alkenyl and aryl halides in the $\left[\mathrm{NiCl}_{2}\right.$ (bipy)] $/ \mathrm{PbBr}_{2} / \mathrm{Al}$ redox system, also see references 11 and 12.
18 D. C. Billington, in Topics in Comprehensive Organic Synthesis, ed. B. M . Trost, Pergamon Press, N ew York, vol. 3, p. 423, 1991.

19 The homo coupling of allyl bromide in the $\left[\mathrm{NiCl}_{2}\right.$ (bipy) $] / \mathrm{PbBr}_{2} / \mathrm{Al}$ redox system afforded the corresponding dimer in $44 \%$ yield.

Paper 6/06049H
R eceived 2nd September 1996 A ccepted 28th O ctober 1996

